Среда, 18.12.2024, 14:25

Приветствую Вас Странник | RSS
Alex Arahort Site
ГлавнаяРегистрацияВход
[ Новые сообщения · Участники · Правила форума · Поиск · RSS ]
  • Страница 1 из 1
  • 1
Модератор форума: Alex_Arahort  
Обыкновенные дифференциальные уравнения. Их виды и методы ре
Alex_ArahortДата: Воскресенье, 06.05.2012, 17:48 | Сообщение # 1
Admin
Группа: Администраторы
Сообщений: 91
Репутация: 666
Статус: Offline
http://twt.mpei.ac.ru/math/ODE/ODEall/ODEall_01000000.html

Дифференциа́льное уравне́ние — уравнение, связывающее значение некоторой неизвестной функции в некоторой точке и значение её производных различных порядков в той же точке.
Обыкновенным дифференциальным уравнением n –го порядка называется уравнение вида
F (x, y(x), y '(x), y ''(x), … , y(n)(x)) = 0,
где F — известная функция (n + 2)-х переменных, x — независимая переменная из интервала (a,b), y(x) — неизвестная функция. Число n называется порядком уравнения.
Функция y(x) называется решением (или интегралом) дифференциального уравнения на промежутке (a, b), если она n раз дифференцируема на (a, b) и при подстановке в уравнение обращает его в тождество.
Обыкновенные дифференциальные уравнения, разрешенные относительно старшей производной, называют уравнениями в нормальной форме:
y(n) = f(x, y, y ', y '', … , y(n − 1)).
Дифференциальное уравнение обычно имеет бесконечно много решений. Чтобы выделить нужное решение, используют дополнительные условия.
Чтобы выделить единственное решение уравнения n–го порядка обычно задают n начальных условий y(x0) = y0, y '(x0) = y1, y ''(x0) = y2, … , y(n − 1)(x0) = yn − 1.

Задачей Коши (или начальной задачей) называется задача отыскания решения y = y(x) уравнения
F(x, y(x), y '(x), y ''(x), … , y(n )(x)) = 0, x>x0,
удовлетворяющего условиям
y(x0) = y0, y '(x0) = y1, y ''(x0) = y2, … , y(n − 1)(x0) = yn − 1.

Условия y(x0) = y0, y '(x0) = y1, y ''(x0) = y2, … , y(n − 1)(x0) = yn − 1 называются начальными данными, начальными условиями или данными Коши.


Я рождён на границе меж светом и тьмой, был распят за безумные игры с судьбой...
 
  • Страница 1 из 1
  • 1
Поиск:


Alex Arahort © 2024