Alex_Arahort | Дата: Воскресенье, 06.05.2012, 17:46 | Сообщение # 1 |
Admin
Группа: Администраторы
Сообщений: 91
Статус: Offline
| festival.1september.ru/articles/507571/
Необходимый признак сходимости ряда.
Ряд может сходиться только при условии, что его общий член при неограниченном увеличении номера стремится к нулю: .
Если , то ряд расходится – это достаточный признак расходимости ряда.
Достаточные признаки сходимости ряда с положительными членами.
Признак сравнения рядов с положительными членами.
Исследуемый ряд сходится, если его члены не превосходят соответствующих членов другого, заведомо сходящегося ряда; исследуемый ряд расходится, если его члены превосходят соответствующие члены другого, заведомо расходящегося ряда.
Признак Даламбера.
Если для ряда с положительными членами
выполняется условие , то ряд сходится при и расходится при .
Признак Даламбера не дает ответа, если . В этом случае для исследования ряда применяются другие приемы.
Я рождён на границе меж светом и тьмой, был распят за безумные игры с судьбой...
|
|
| |