Среда, 18.12.2024, 14:22

Приветствую Вас Странник | RSS
Alex Arahort Site
ГлавнаяРегистрацияВход
[ Новые сообщения · Участники · Правила форума · Поиск · RSS ]
  • Страница 1 из 1
  • 1
Модератор форума: Alex_Arahort  
Предел числовой последовательности
Alex_ArahortДата: Воскресенье, 06.05.2012, 17:43 | Сообщение # 1
Admin
Группа: Администраторы
Сообщений: 91
Репутация: 666
Статус: Offline
ru.wikipedia.org/wiki/Предел_числовой_последовательности

Предел числовой последовательности — предел последовательности элементов числового пространства. Числовое пространство — это метрическое пространство, расстояние в котором определяется как модуль разности между элементами. Поэтому,
предел числовой последовательности — это такое число, что для всякой сколь угодно малой величины существует номер, начиная с которого уклонение членов последовательности от данной точки становится меньше заранее заданной величины.
Понятие предела последовательности вещественных чисел формулируется совсем просто, а в случае комплексных чисел существование предела последовательности равносильно существованию пределов соответствующих последовательностей вещественных и мнимых частей комплексных чисел.
Предел (числовой последовательности) — одно из основных понятий математического анализа. Каждое вещественное число может быть представлено как предел последовательности приближений к нужному значению. Система счисления предоставляет такую последовательность уточнений. Целые и рациональные числа описываются периодическими последовательностями приближений, в то время как иррациональные числа описываются непериодическими последовательностями приближений. [1] В численных методах, где используется представление чисел с конечным числом знаков, особую роль играет выбор системы приближений. Критерием качества системы приближений является скорость сходимости. В этом отношении, оказываются эффективными представления чисел в виде цепных дробей.


Я рождён на границе меж светом и тьмой, был распят за безумные игры с судьбой...
 
  • Страница 1 из 1
  • 1
Поиск:


Alex Arahort © 2024